62. Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
O(mn), space(mn)
public class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
for(int i=0; i<m;i++){
dp[i][0] =1;
}
for(int i=0; i<n;i++){
dp[0][i] =1;
}
for(int i=1; i<m; i++){
for(int j=1;j<n;j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}
improve o(mn), space(2n)
public class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[2][n];
for(int i=0;i<n;i++){
dp[0][i] = 1;
dp[1][i] = 1;
}
int current =0;
for(int i=1;i<m;i++){
int next = 1- current;
for(int j=1; j<n;j++){
dp[next][j] = dp[current][j] + dp[next][j-1];
}
current = 1- current; //current will be next.
}
return dp[current][n-1];// can use a simple example to figure out whether is current or 1-current.
}
}
even better solution
public class Solution {
public int uniquePaths(int m, int n) {
int[] dp = new int[n];
for(int i =0; i< n; i++) dp[i] = 1;
for(int i=1; i < m;i++)
for(int j=1;j<n;j++)
dp[j] += dp[j-1];
return dp[n-1];
}
}