366 Find Leaves of Binary Tree
Given a binary tree, collect a tree's nodes as if you were doing this: Collect and remove all leaves, repeat until the tree is empty.
Example: Given binary tree
1
/ \
2 3
/ \
4 5
Returns [4, 5, 3], [2], [1].
Explanation:
Removing the leaves [4, 5, 3] would result in this tree:
1 / 2
- Now removing the leaf [2] would result in this tree:
1
- Now removing the leaf [1] would result in the empty tree:
[]
Returns [4, 5, 3], [2], [1].
DFS
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<List<Integer>> findLeaves(TreeNode root) {
if(root== null) return new ArrayList<List<Integer>>();
List<List<Integer>> l = findLeaves(root.left);
List<List<Integer>> r = findLeaves(root.right);
List<Integer> list = new ArrayList<>();
list.add(root.val);
if(l == null && r == null){
List<List<Integer>> res = new ArrayList<>();
res.add(list);
return res;
}else if(l == null || r == null){
List<List<Integer>> res = l == null ? r : l;
res.add(list);
return res;
}else{
List<List<Integer>> lli = l.size() > r.size() ? merge(l,r): merge(r,l);
lli.add(list);
return lli;
}
}
private List<List<Integer>> merge(List<List<Integer>> large, List<List<Integer>> small){
for(int i=0; i< small.size(); i++){
large.get(i).addAll(small.get(i));
}
return large;
}
}
AND the concept of Tree Depth, which the root node has most deepest depth. and left has depth of 0.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
List<List<Integer>> res = new ArrayList<>();
public List<List<Integer>> findLeaves(TreeNode root) {
find(root);
return res;
}
private int find(TreeNode root){
if(root == null) return -1;
int depth = Math.max(find(root.left), find(root.right)) +1;
if(depth >= res.size()){
res.add(new ArrayList<>());
}
res.get(depth).add(root.val);
return depth;
}
}