334. Increasing Triplet Subsequence
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.
Formally the function should: Return true if there exists i, j, k such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n-1 else return false.
Your algorithm should run in O(n) time complexity and O(1) space complexity.
Examples: Given [1, 2, 3, 4, 5], return true.
Given [5, 4, 3, 2, 1], return false.
Related issue Longest Increasing Subsequence
Use two variables, min, seondMin to narrow the search range, initially, both set to MAX_VALUE, min is the smallest number so far, and secondMin is a number larger than min, but after min's position.
if val <= min, min =val;
if min < val <= secondMin, secondMin = val;
else return true; val is the third val in the sequence.
public class Solution {
public boolean increasingTriplet(int[] nums) {
int min = Integer.MAX_VALUE;
int secondMin = Integer.MAX_VALUE;
for(int val : nums){
if(val <= min){
min = val;
}else if(min < val && val <= secondMin){
secondMin = val;
}else{
return true;
}
}
return false;
}
}