34. Search for a Range
Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
For example, Given [5, 7, 7, 8, 8, 10] and target value 8, return [3, 4].
requires 2 binary search,
public class Solution {
public int[] searchRange(int[] nums, int target) {
int[] res = new int[]{-1,-1};
if(nums == null || nums.length == 0) return res;
if(nums[0] > target || nums[nums.length-1] < target) return res;
int l =0;
int r = nums.length-1;// eventually l may reach nums.length-1 by `l = mid +1`
while(l < r){
int mid = l + (r-l)/2;
if(nums[mid] < target){
l = mid+1;
}else{
r = mid;
}
}
if(nums[l] != target) return res;
res[0] = l;
r = nums.length;// l may reach nums.length since the last number is the closing number,
//so both r and l == nums.length, and r -1 is the border.
while(l < r){
int mid = l + (r-l)/2;
if(nums[mid] > target){
r = mid;
}else{
l = mid +1;
}
}
res[1] = r-1;
return res;
}
}