216. Combination Sum III
Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Example 1:
Input: k = 3, n = 7
Output:
[[1,2,4]]
Example 2:
Input: k = 3, n = 9
Output:
[[1,2,6], [1,3,5], [2,3,4]]
backtracking
public class Solution {
List<List<Integer> > res = new ArrayList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
sum3(1, 0, n, 0, k, new ArrayList<Integer>());
return res;
}
private void sum3(int val, int curSum, int n, int count, int k, List<Integer> list){
if(count > k || curSum > n) return;
if(count == k && curSum == n){
List<Integer> l = new ArrayList<>(list);
res.add(l);
return;
}
for(int i=val; i<10 ; i++){
list.add(i);
sum3(i+1, curSum+i, n, count+1, k, list);
list.remove(list.size()-1);
}
}
}
better form
public class Solution {
List<List<Integer>> res = new ArrayList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
if(k > n) return res;
sum3(1, 9, 0, n, 0, k, new ArrayList<Integer>());
return res;
}
void sum3(int start, int stop, int cur, int target, int count, int k, List<Integer> list){
if(count > k) return;
if(count == k){
if(cur == target){
res.add(new ArrayList<Integer>(list));
}
return;
}
for(int i=start; i<=stop; i++){
if(cur + i > target) break;
list.add(i);
sum3(i+1, stop, cur+i, target, count+1, k, list);
list.remove(list.size()-1);
}
}
}